Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomolecules ; 12(6)2022 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-35740948

RESUMO

Reactive oxygen species (ROS) can be beneficial or harmful in health and disease. While low levels of ROS serve as signaling molecules to regulate vascular tone and the growth and proliferation of endothelial cells, elevated levels of ROS contribute to numerous pathologies, such as endothelial dysfunctions, colon cancer, and fibrosis. ROS and their cellular sources have been extensively studied as potential targets for clinical intervention. Whereas various ROS sources are important for different pathologies, four NADPH oxidases (NOX1, NOX2, NOX4, and NOX5) play a prominent role in homeostasis and disease. NOX1-generated ROS have been implicated in hypertension, suggesting that inhibition of NOX1 may be a promising therapeutic approach. NOX2 and NOX4 oxidases are of specific interest due to their role in producing extra- and intracellular hydrogen peroxide (H2O2). NOX4-released hydrogen peroxide activates NOX2, which in turn stimulates the release of mitochondrial ROS resulting in ROS-induced ROS release (RIRR) signaling. Increased ROS production from NOX5 contributes to atherosclerosis. This review aims to summarize recent findings on NOX enzymes and clinical trials inhibiting NADPH oxidases to target pathologies including diabetes, idiopathic pulmonary fibrosis (IPF), and primary biliary cholangitis (PBC).


Assuntos
Hipertensão , NADPH Oxidases , Células Endoteliais , Humanos , Peróxido de Hidrogênio , NADPH Oxidases/antagonistas & inibidores , Espécies Reativas de Oxigênio
2.
Basic Res Cardiol ; 117(1): 24, 2022 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-35469044

RESUMO

Impaired endothelium-dependent vasodilation has been suggested to be a key component of coronary microvascular dysfunction (CMD). A better understanding of endothelial pathways involved in vasodilation in human arterioles may provide new insight into the mechanisms of CMD. The goal of this study is to investigate the role of TRPV4, NOX4, and their interaction in human arterioles and examine the underlying mechanisms. Arterioles were freshly isolated from adipose and heart tissues obtained from 71 patients without coronary artery disease, and vascular reactivity was studied by videomicroscopy. In human adipose arterioles (HAA), ACh-induced dilation was significantly reduced by TRPV4 inhibitor HC067047 and by NOX 1/4 inhibitor GKT137831, but GKT137831 did not further affect the dilation in the presence of TRPV4 inhibitors. GKT137831 also inhibited TRPV4 agonist GSK1016790A-induced dilation in HAA and human coronary arterioles (HCA). NOX4 transcripts and proteins were detected in endothelial cells of HAA and HCA. Using fura-2 imaging, GKT137831 significantly reduced GSK1016790A-induced Ca2+ influx in the primary culture of endothelial cells and TRPV4-WT-overexpressing human coronary artery endothelial cells (HCAEC). However, GKT137831 did not affect TRPV4-mediated Ca2+ influx in non-phosphorylatable TRPV4-S823A/S824A-overexpressing HCAEC. In addition, treatment of HCAEC with GKT137831 decreased the phosphorylation level of Ser824 in TRPV4. Finally, proximity ligation assay (PLA) revealed co-localization of NOX4 and TRPV4 proteins. In conclusion, both TRPV4 and NOX4 contribute to ACh-induced dilation in human arterioles from patients without coronary artery disease. NOX4 increases TRPV4 phosphorylation in endothelial cells, which in turn enhances TRPV4-mediated Ca2+ entry and subsequent endothelium-dependent dilation in human arterioles.


Assuntos
Doença da Artéria Coronariana , Vasodilatação , Arteríolas/metabolismo , Doença da Artéria Coronariana/metabolismo , Células Endoteliais/metabolismo , Endotélio Vascular/metabolismo , Humanos , NADPH Oxidase 4/metabolismo , Fosforilação , Canais de Cátion TRPV , Vasodilatação/fisiologia
3.
Physiol Rep ; 9(3): e14507, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33587335

RESUMO

OBJECTIVE: The objective of this study was to measure flow-mediated dilation (FMD) prior to and following transient increases in intraluminal pressure (IILP) in resistance arterioles isolated from subjects with and without coronary artery disease (CAD) (CAD and non-CAD) and non-CAD subjects with hypertension. METHODS: Arterioles were isolated from discarded surgical tissues (adipose and atrial) from patients without coronary artery disease (non-CAD; ≤1 risk factor, excluding hypertension), with CAD, and non-CAD patients with hypertension (hypertension as the only risk factor). To simulate transient hypertension, increased IILP was generated (150 mmHg, 30 min) by gravity. Arterioles were constricted with endothelin-1, followed by FMD and endothelial-independent dilation prior to and following exposure to IILP. RESULTS: IILP reduced FMD in non-CAD and CAD arterioles relative to pre-IILP (p <.05 at 100 cmH2 O). In contrast, arterioles from non-CAD hypertensive subjects exhibited no reduction in maximal FMD following IILP (p = .84 at 100 cmH2 O). FMD was reduced by L-NAME prior to IILP in non-CAD hypertensive patients (p < .05 at 100 cmH2 O); however, following IILP, FMD was inhibited by peg-cat (p < .05 at 100 cmH2 O), indicating a switch from NO to H2 O2 as the mechanism of dilation. CONCLUSIONS: Acute exposure (30 min) to IILP (150 mmHg) attenuates the magnitude of FMD in non-CAD and CAD resistance arterioles. The presence of clinically diagnosed hypertension in non-CAD resistance arterioles preserves the magnitude of FMD following IILP as a result of a compensatory switch from NO to H2 O2 as the mechanism of dilation.


Assuntos
Tecido Adiposo/irrigação sanguínea , Pressão Arterial , Arteríolas/fisiopatologia , Doença da Artéria Coronariana/fisiopatologia , Vasos Coronários/fisiopatologia , Hipertensão/fisiopatologia , Microcirculação , Vasodilatação , Adaptação Fisiológica , Adulto , Idoso , Arteríolas/metabolismo , Estudos de Casos e Controles , Doença da Artéria Coronariana/diagnóstico , Doença da Artéria Coronariana/metabolismo , Vasos Coronários/metabolismo , Feminino , Humanos , Peróxido de Hidrogênio/metabolismo , Hipertensão/diagnóstico , Hipertensão/metabolismo , Masculino , Pessoa de Meia-Idade , Óxido Nítrico/metabolismo
4.
Microcirculation ; 27(7): e12625, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32395853

RESUMO

OBJECTIVE: Treatment with BCR-ABL tyrosine kinase inhibitors (TKIs) is the standard of care for patients with chronic myeloid leukemia, however evidence indicates these compounds may have cardiovascular side-effects. This study sought to determine if ex vivo exposure of human adipose arterioles to the BCR-ABL TKIs imatinib and nilotinib causes endothelial dysfunction. METHODS: Human adipose arterioles were incubated overnight in cell culture media containing vehicle (PBS), imatinib (10 µmol/L) or nilotinib (100 µmol/L). Arterioles were cannulated onto glass pipettes and flow mediated dilation (FMD) was assessed via video microscopy. To determine the mechanism of vasodilation, FMD was re-assessed in the presence of either the nitric oxide synthase inhibitor L-NAME (100 µmol/L) or the H2 O2 scavenger PEG-Catalase (500 U/mL). RESULTS: Neither imatinib nor nilotinib affected the magnitude of FMD (max dilation = 78±17% vehicle, 80 ± 24% nilotinib, 73 ± 13% imatinib). FMD was decreased by L-NAME in vehicle-treated arterioles (max dilation = 47±29%). Conversely, L-NAME had no effect on FMD in imatinib- or nilotinib-treated vessels (max dilation = 79±14% and 80 ± 24%, respectively), rather FMD was inhibited by PEG-Catalase (max dilation = 29±11% and 29 ± 14%, respectively). CONCLUSION: Incubating human arterioles with imatinib or nilotinib switches the mediator of FMD from vasoprotective nitric oxide to pro-inflammatory H2 O2 .


Assuntos
Proteínas de Fusão bcr-abl/antagonistas & inibidores , Microvasos/efeitos dos fármacos , Microvasos/fisiologia , Inibidores de Proteínas Quinases/efeitos adversos , Vasodilatação/efeitos dos fármacos , Adulto , Idoso , Antineoplásicos/efeitos adversos , Arteríolas/efeitos dos fármacos , Arteríolas/fisiologia , Cardiotônicos/farmacologia , Catalase/farmacologia , Inibidores Enzimáticos/farmacologia , Feminino , Humanos , Peróxido de Hidrogênio/metabolismo , Mesilato de Imatinib/efeitos adversos , Técnicas In Vitro , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/fisiopatologia , Masculino , Pessoa de Meia-Idade , NG-Nitroarginina Metil Éster/farmacologia , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase/antagonistas & inibidores , Polietilenoglicóis/farmacologia , Pirimidinas/efeitos adversos
5.
Am J Physiol Heart Circ Physiol ; 317(4): H705-H710, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31397169

RESUMO

Chemotherapy (CT) is a necessary treatment to prevent the growth and survival of cancer cells. However, CT has a well-established adverse impact on the cardiovascular (CV) system, even years after cessation of treatment. The effects of CT drugs on tumor vasculature have been the focus of much research, but little evidence exists showing the effects on the host microcirculation. Microvascular (MV) dysfunction is an early indicator of numerous CV disease phenotypes, including heart failure. The goal of this study was to evaluate the direct effect of doxorubicin (Dox) on human coronary MV function. To study the effect of CT on the cardiac MV function, flow-mediated dilation (FMD), pharmacologically-induced endothelial dependent dilation to acetylcholine (ACh), and smooth muscle-dependent dilation to papaverine were investigated. Vessels were freshly isolated from atrial appendages of adult patients undergoing cardiopulmonary bypass surgery or from cardiac tissue of pediatric patients, collected at the time of surgery to repair congenital heart defects. Isolated vessels were incubated in endothelial culture medium containing vehicle or Dox (100 nm, 15-20 h) and used to measure dilator function by video microscopy. Ex vivo treatment of adult human coronary microvessels with Dox significantly impaired flow-mediated dilation (FMD). Conversely, in pediatric coronary microvessels, Dox-induced impairment of FMD was significantly reduced in comparison with adult subjects. In both adult and pediatric coronary microvessels, ACh-induced constriction was reversed into dilation in the presence of Dox. Smooth muscle-dependent dilation remained unchanged in all groups tested. In vessels from adult subjects, acute treatment with Dox in clinically relevant doses caused significant impairment of coronary arteriolar function, whereas vessels from pediatric subjects showed only marginal impairment to the same stressor. This interesting finding might explain the delayed onset of future adverse CV events in children compared with adults after anthracycline therapy.NEW & NOTEWORTHY We have characterized, for the first time, human microvascular responses to acute ex vivo exposure to doxorubicin in coronary vessels from patients without cancer. Our data show an augmented impairment of endothelial function in vessels from adult subjects compared with pediatric samples.


Assuntos
Antibióticos Antineoplásicos/toxicidade , Arteríolas/efeitos dos fármacos , Vasos Coronários/efeitos dos fármacos , Doxorrubicina/toxicidade , Vasodilatação/efeitos dos fármacos , Adolescente , Fatores Etários , Idoso , Arteríolas/fisiopatologia , Cardiotoxicidade , Estudos de Casos e Controles , Criança , Pré-Escolar , Vasos Coronários/fisiopatologia , Feminino , Humanos , Técnicas In Vitro , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Vasodilatadores/farmacologia
6.
J Biol Chem ; 293(14): 5307-5322, 2018 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-29462784

RESUMO

Transient receptor potential vanilloid 4 (TRPV4) is a Ca2+-permeable channel of the transient receptor potential (TRP) superfamily activated by diverse stimuli, including warm temperature, mechanical forces, and lipid mediators such as arachidonic acid (AA) and its metabolites. This activation is tightly regulated by protein phosphorylation carried out by various serine/threonine or tyrosine kinases. It remains poorly understood how phosphorylation differentially regulates TRPV4 activation in response to different stimuli. We investigated how TRPV4 activation by AA, an important signaling process in the dilation of coronary arterioles, is affected by protein kinase A (PKA)-mediated phosphorylation at Ser-824. Wildtype and mutant TRPV4 channels were expressed in human coronary artery endothelial cells (HCAECs). AA-induced TRPV4 activation was blunted in the S824A mutant but was enhanced in the phosphomimetic S824E mutant, whereas the channel activation by the synthetic agonist GSK1016790A was not affected. The low level of basal phosphorylation at Ser-824 was robustly increased by the redox signaling molecule hydrogen peroxide (H2O2). The H2O2-induced phosphorylation was accompanied by an enhanced channel activation by AA, and this enhanced response was largely abolished by PKA inhibition or S824A mutation. We further identified a potential structural context dependence of Ser-824 phosphorylation-mediated TRPV4 regulation involving an interplay between AA binding and the possible phosphorylation-induced rearrangements of the C-terminal helix bearing Ser-824. These results provide insight into how phosphorylation specifically regulates TRPV4 activation. Redox-mediated TRPV4 phosphorylation may contribute to pathologies associated with enhanced TRPV4 activity in endothelial and other systems.


Assuntos
Canais de Cátion TRPV/metabolismo , Canais de Cátion TRPV/fisiologia , Ácido Araquidônico/metabolismo , Canais de Cálcio/metabolismo , Células Cultivadas , Vasos Coronários/metabolismo , Cristalografia por Raios X , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Células Endoteliais/metabolismo , Humanos , Peróxido de Hidrogênio/metabolismo , Fosforilação , Transdução de Sinais
7.
Microcirculation ; 24(6)2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28480622

RESUMO

OBJECTIVES: H2 O2 contributes to FID of human arterioles. This study is designed to examine the roles of mitochondria and NADPH oxidase in modulating the release of ROS and in mediating FID. We tested whether NADPH oxidase contributes to mitochondrial ROS generation in arterioles during CAD. METHODS: Visceral adipose arterioles obtained from patients with or without CAD were cannulated and pressurized for videomicroscopic measurement of arteriolar diameters. Dilator responses and ROS production during flow were determined in the presence and absence of the NADPH oxidase inhibitor gp91ds-tat and the mitochondrial electron transport inhibitor rotenone. RESULTS: Both dilation and H2 O2 generation during flow were reduced in the presence of rotenone (13.5±8% vs 97±% without rotenone) or gp91ds-tat in patients with CAD, while patients without CAD exhibited H2 O2 -independent dilations. Mitochondrial superoxide production during flow was attenuated by gp91ds-tat in arterioles from CAD patients. CONCLUSIONS: These findings indicate that ROS produced by NADPH oxidase are an upstream component of the mitochondria-dependent pathway contributing to flow-dependent H2 O2 generation and dilation in peripheral microvessels from patients with CAD. We conclude that in CAD, both mitochondria and NADPH oxidase contribute to FID through a redox mechanism in visceral arterioles.


Assuntos
Arteríolas/fisiopatologia , Mitocôndrias/metabolismo , NADPH Oxidases/fisiologia , Vasodilatação , Tecido Adiposo/irrigação sanguínea , Doença da Artéria Coronariana/fisiopatologia , Humanos , Peróxido de Hidrogênio , Pessoa de Meia-Idade , Mitocôndrias/fisiologia , Oxirredução , Espécies Reativas de Oxigênio/metabolismo
8.
Basic Res Cardiol ; 112(1): 5, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27995364

RESUMO

In microvessels of patients with coronary artery disease (CAD), flow-mediated dilation (FMD) is largely dependent upon the endothelium-derived hyperpolarizing factor H2O2. The goal of this study is to examine the influence of age and presence or absence of disease on the mechanism of FMD. Human coronary or adipose arterioles (~150 µm diameter) were prepared for videomicroscopy. The effect of inhibiting COX [indomethacin (Indo) or NOS (L-NAME), eliminating H2O2 (polyethylene glycol-catalase (PEG-CAT)] or targeting a reduction in mitochondrial ROS with scavengers/inhibitors [Vitamin E (mtVitamin E); phenylboronic acid (mtPBA)] was determined in children aged 0-18 years; young adults 19-55 years; older adults >55 years without CAD, and similarly aged adults with CAD. Indo eliminated FMD in children and reduced FMD in younger adults. This response was mediated mainly by PGI2, as the prostacyclin-synthase-inhibitor trans-2-phenyl cyclopropylamine reduced FMD in children and young adults. L-NAME attenuated dilation in children and younger adults and eliminated FMD in older adults without CAD, but had no effect on vessels from those with CAD, where mitochondria-derived H2O2 was the primary mediator. The magnitude of dilation was reduced in older compared to younger adults independent of CAD. Exogenous treatment with a sub-dilator dose of NO blocked FMD in vessels from subjects with CAD, while prolonged inhibition of NOS in young adults resulted in a phenotype similar to that observed in disease. The mediator of coronary arteriolar FMD evolves throughout life from prostacyclin in youth, to NO in adulthood. With the onset of CAD, NO-inhibitable release of H2O2 emerges as the exclusive mediator of FMD. These findings have implications for use of pharmacological agents, such as nonsteroidal anti-inflammatory agents in children and the role of microvascular endothelium in cardiovascular health.


Assuntos
Envelhecimento/patologia , Doença da Artéria Coronariana/fisiopatologia , Vasos Coronários/fisiopatologia , Vasodilatação/fisiologia , Adolescente , Adulto , Western Blotting , Criança , Pré-Escolar , Feminino , Humanos , Imuno-Histoquímica , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Espécies Reativas de Oxigênio , Adulto Jovem
9.
Arterioscler Thromb Vasc Biol ; 36(6): 1254-62, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27079876

RESUMO

OBJECTIVE: This study examined vascular actions of angiotensin 1-7 (ANG 1-7) in human atrial and adipose arterioles. APPROACH AND RESULTS: The endothelium-derived hyperpolarizing factor of flow-mediated dilation (FMD) switches from antiproliferative nitric oxide (NO) to proatherosclerotic hydrogen peroxide in arterioles from humans with coronary artery disease (CAD). Given the known vasoprotective properties of ANG 1-7, we tested the hypothesis that overnight ANG 1-7 treatment restores the NO component of FMD in arterioles from patients with CAD. Endothelial telomerase activity is essential for preserving the NO component of vasodilation in the human microcirculation; thus, we also tested whether telomerase activity was necessary for ANG 1-7-mediated vasoprotection by treating separate arterioles with ANG 1-7±the telomerase inhibitor 2-[[(2E)-3-(2-naphthalenyl)-1-oxo-2-butenyl1-yl]amino]benzoic acid. ANG 1-7 dilated arterioles from patients without CAD, whereas dilation was significantly reduced in arterioles from patients with CAD. In atrial arterioles from patients with CAD incubated with ANG 1-7 overnight, the NO synthase inhibitor NG-nitro-l-arginine methyl ester abolished FMD, whereas the hydrogen peroxide scavenger polyethylene glycol catalase had no effect. Conversely, in vessels incubated with ANG 1-7+2-[[(2E)-3-(2-naphthalenyl)-1-oxo-2-butenyl1-yl]amino]benzoic acid, NG-nitro-l-arginine methyl ester had no effect on FMD, but polyethylene glycol catalase abolished dilation. In cultured human coronary artery endothelial cells, ANG 1-7 significantly increased telomerase activity. These results indicate that ANG 1-7 dilates human microvessels, and dilation is abrogated in the presence of CAD. Furthermore, ANG 1-7 treatment is sufficient to restore the NO component of FMD in arterioles from patients with CAD in a telomerase-dependent manner. CONCLUSIONS: ANG 1-7 exerts vasoprotection in the human microvasculature via modulation of telomerase activity.


Assuntos
Tecido Adiposo/irrigação sanguínea , Angiotensina I/farmacologia , Arteríolas/efeitos dos fármacos , Vasos Coronários/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Fragmentos de Peptídeos/farmacologia , Telomerase/metabolismo , Vasodilatação/efeitos dos fármacos , Vasodilatadores/farmacologia , Idoso , Arteríolas/enzimologia , Arteríolas/fisiopatologia , Estudos de Casos e Controles , Células Cultivadas , Doença da Artéria Coronariana/enzimologia , Doença da Artéria Coronariana/fisiopatologia , Vasos Coronários/enzimologia , Vasos Coronários/fisiopatologia , Relação Dose-Resposta a Droga , Células Endoteliais/enzimologia , Inibidores Enzimáticos/farmacologia , Feminino , Átrios do Coração , Humanos , Técnicas In Vitro , Masculino , Pessoa de Meia-Idade , Óxido Nítrico/metabolismo , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas/agonistas , Proteínas Proto-Oncogênicas/metabolismo , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais/efeitos dos fármacos , Telomerase/antagonistas & inibidores , Telomerase/genética
10.
J Am Heart Assoc ; 2(3): e000080, 2013 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-23619744

RESUMO

BACKGROUND: Arachidonic acid (AA) and/or its enzymatic metabolites are important lipid mediators contributing to endothelium-derived hyperpolarizing factor (EDHF)-mediated dilation in multiple vascular beds, including human coronary arterioles (HCAs). However, the mechanisms of action of these lipid mediators in endothelial cells (ECs) remain incompletely defined. In this study, we investigated the role of the transient receptor potential vanilloid 4 (TRPV4) channel in AA-induced endothelial Ca(2+) response and dilation of HCAs. METHODS AND RESULTS: AA induced concentration-dependent dilation in isolated HCAs. The dilation was largely abolished by the TRPV4 antagonist RN-1734 and by inhibition of endothelial Ca(2+)-activated K(+) channels. In native and TRPV4-overexpressing human coronary artery ECs (HCAECs), AA increased intracellular Ca(2+) concentration ([Ca(2+)]i), which was mediated by TRPV4-dependent Ca(2+) entry. The AA-induced [Ca(2+)]i increase was inhibited by cytochrome P450 (CYP) inhibitors. Surprisingly, the CYP metabolites of AA, epoxyeicosatrienoic acids (EETs), were much less potent activators of TRPV4, and CYP inhibitors did not affect EET production in HCAECs. Apart from its effect on [Ca(2+)]i, AA induced endothelial hyperpolarization, and this effect was required for Ca(2+) entry through TRPV4. AA-induced and TRPV4-mediated Ca(2+) entry was also inhibited by the protein kinase A inhibitor PKI. TRPV4 exhibited a basal level of phosphorylation, which was inhibited by PKI. Patch-clamp studies indicated that AA activated TRPV4 single-channel currents in cell-attached and inside-out patches of HCAECs. CONCLUSIONS: AA dilates HCAs through a novel mechanism involving endothelial TRPV4 channel-dependent Ca(2+) entry that requires endothelial hyperpolarization, PKA-mediated basal phosphorylation of TRPV4, and direct activation of TRPV4 channels by AA.


Assuntos
Ácido Araquidônico/farmacologia , Sinalização do Cálcio/efeitos dos fármacos , Sinalização do Cálcio/fisiologia , Cálcio/metabolismo , Vasos Coronários/efeitos dos fármacos , Vasos Coronários/fisiologia , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/fisiologia , Transdução de Sinais/efeitos dos fármacos , Canais de Cátion TRPV/efeitos dos fármacos , Canais de Cátion TRPV/fisiologia , Arteríolas/citologia , Arteríolas/efeitos dos fármacos , Arteríolas/fisiologia , Células Cultivadas , Vasos Coronários/citologia , Endotélio Vascular/citologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
11.
Circ Res ; 110(3): 471-80, 2012 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-22158710

RESUMO

RATIONALE: Hydrogen peroxide (H(2)O(2)) serves as a key endothelium-derived hyperpolarizing factor mediating flow-induced dilation in human coronary arterioles (HCAs). The precise mechanisms by which H(2)O(2) elicits smooth muscle hyperpolarization are not well understood. An important mode of action of H(2)O(2) involves the oxidation of cysteine residues in its target proteins, including protein kinase G (PKG)-Iα, thereby modulating their activities. OBJECTIVE: Here we hypothesize that H(2)O(2) dilates HCAs through direct oxidation and activation of PKG-Iα leading to the opening of the large-conductance Ca(2+)-activated K(+) (BK(Ca)) channel and subsequent smooth muscle hyperpolarization. METHODS AND RESULTS: Flow and H(2)O(2) induced pressure gradient/concentration-dependent vasodilation in isolated endothelium-intact and -denuded HCAs, respectively. The dilation was largely abolished by iberiotoxin, a BK(Ca) channel blocker. The PKG inhibitor Rp-8-Br-PET-cGMP also markedly inhibited flow- and H(2)O(2)-induced dilation, whereas the soluble guanylate cyclase inhibitor ODQ had no effect. Treatment of coronary smooth muscle cells (SMCs) with H(2)O(2) elicited dose-dependent, reversible dimerization of PKG-Iα, and induced its translocation to the plasma membrane. Patch-clamp analysis identified a paxilline-sensitive single-channel K(+) current with a unitary conductance of 246-pS in freshly isolated coronary SMCs. Addition of H(2)O(2) into the bath solution significantly increased the probability of BK(Ca) single-channel openings recorded from cell-attached patches, an effect that was blocked by the PKG-Iα inhibitor DT-2. H(2)O(2) exhibited an attenuated stimulatory effect on BK(Ca) channel open probability in inside-out membrane patches. CONCLUSIONS: H(2)O(2) dilates HCAs through a novel mechanism involving protein dimerization and activation of PKG-Iα and subsequent opening of smooth muscle BK(Ca) channels.


Assuntos
Arteríolas/fisiologia , Vasos Coronários/fisiologia , Proteínas Quinases Dependentes de GMP Cíclico/fisiologia , Dimerização , Peróxido de Hidrogênio/farmacologia , Canais de Potássio Ativados por Cálcio de Condutância Alta/fisiologia , Vasodilatação/efeitos dos fármacos , Arteríolas/efeitos dos fármacos , Células Cultivadas , Vasos Coronários/efeitos dos fármacos , Proteínas Quinases Dependentes de GMP Cíclico/antagonistas & inibidores , Relação Dose-Resposta a Droga , Endotélio Vascular/citologia , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/fisiologia , Inibidores Enzimáticos/farmacologia , Fluoresceínas/farmacologia , Humanos , Músculo Liso Vascular/citologia , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/fisiologia , Técnicas de Patch-Clamp , Fragmentos de Peptídeos/farmacologia , Peptídeos/farmacologia , Vasodilatação/fisiologia
12.
Am J Physiol Heart Circ Physiol ; 302(3): H634-42, 2012 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-22140047

RESUMO

In human coronary arterioles (HCAs) from patients with coronary artery disease, flow-induced dilation is mediated by a unique mechanism involving the release of H(2)O(2) from the mitochondria of endothelial cells (ECs). How flow activates ECs to elicit the mitochondrial release of H(2)O(2) remains unclear. Here, we examined the role of the transient receptor potential vanilloid type 4 (TRPV4) channel, a mechanosensitive Ca(2+)-permeable cation channel, in mediating ROS formation and flow-induced dilation in HCAs. Using RT-PCR, Western blot analysis, and immunohistochemical analysis, we detected the mRNA and protein expression of TRPV4 channels in ECs of HCAs and cultured human coronary artery ECs (HCAECs). In HCAECs, 4α-phorbol-12,13-didecanoate (4α-PDD), a selective TRPV4 agonist, markedly increased (via Ca(2+) influx) intracellular Ca(2+) concentration. In isolated HCAs, activation of TRPV4 channels by 4α-PDD resulted in a potent concentration-dependent dilation, and the dilation was inhibited by removal of the endothelium and by catalase, a H(2)O(2)-metabolizing enzyme. Fluorescence ROS assays showed that 4α-PDD increased the production of mitochondrial superoxide in HCAECs. 4α-PDD also enhanced the production of H(2)O(2) and superoxide in HCAs. Finally, we found that flow-induced dilation of HCAs was markedly inhibited by different TRPV4 antagonists and TRPV4-specific small interfering RNA. In conclusion, the endothelial TRPV4 channel is critically involved in flow-mediated dilation of HCAs. TRPV4-mediated Ca(2+) entry may be an important signaling event leading to the flow-induced release of mitochondrial ROS in HCAs. Elucidation of this novel TRPV4-ROS pathway may improve our understanding of the pathogenesis of coronary artery disease and/or other cardiovascular disorders.


Assuntos
Sinalização do Cálcio/fisiologia , Circulação Coronária/fisiologia , Células Endoteliais/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Canais de Cátion TRPV/metabolismo , Vasodilatação/fisiologia , Idoso , Arteríolas/fisiologia , Apêndice Atrial/citologia , Cálcio/metabolismo , Células Cultivadas , Células Endoteliais/citologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Fenantridinas/farmacologia , RNA Interferente Pequeno/farmacologia , Canais de Cátion TRPV/agonistas , Canais de Cátion TRPV/genética
13.
Am J Physiol Heart Circ Physiol ; 301(3): H647-53, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21685266

RESUMO

The involvement of reactive oxygen species (ROS) in regulating vascular function both in normal vessels and as part of an adaptive response during disease has been intensively studied. From the recognition that ROS serve as important signaling molecules has emerged multiple lines of evidence that there is a functional connectivity between intracellular sites of ROS production. This cross talk has been termed ROS-induced ROS release (RIRR) and is supported by a variety of observations showing that RIRR is a common mechanism for ROS amplification and regional ROS generation. The compartmentalization of ROS production within a cell is critical to its signaling function and is facilitated by microlocalization of specific scavengers. This review will provide descriptions and examples of important mechanisms of RIRR.


Assuntos
Vasos Sanguíneos/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Animais , Antioxidantes/metabolismo , Vasos Sanguíneos/fisiopatologia , Humanos , Mitocôndrias/metabolismo , NADPH Oxidases/metabolismo , Oxirredução
14.
Invest Ophthalmol Vis Sci ; 52(3): 1450-9, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20881290

RESUMO

PURPOSE: Mutations in PITX2 are associated with Axenfeld-Rieger syndrome (ARS), which involves ocular, dental, and umbilical abnormalities. Identification of cis-regulatory elements of PITX2 is important to better understand the mechanisms of disease. METHODS: Conserved noncoding elements surrounding PITX2/pitx2 were identified and examined through transgenic analysis in zebrafish; expression pattern was studied by in situ hybridization. Patient samples were screened for deletion/duplication of the PITX2 upstream region using arrays and probes. RESULTS: Zebrafish pitx2 demonstrates conserved expression during ocular and craniofacial development. Thirteen conserved noncoding sequences positioned within a gene desert as far as 1.1 Mb upstream of the human PITX2 gene were identified; 11 have enhancer activities consistent with pitx2 expression. Ten elements mediated expression in the developing brain, four regions were active during eye formation, and two sequences were associated with craniofacial expression. One region, CE4, located approximately 111 kb upstream of PITX2, directed a complex pattern including expression in the developing eye and craniofacial region, the classic sites affected in ARS. Screening of ARS patients identified an approximately 7600-kb deletion that began 106 to 108 kb upstream of the PITX2 gene, leaving PITX2 intact while removing regulatory elements CE4 to CE13. CONCLUSIONS: These data suggest the presence of a complex distant regulatory matrix within the gene desert located upstream of PITX2 with an essential role in its activity and provides a possible mechanism for the previous reports of ARS in patients with balanced translocations involving the 4q25 region upstream of PITX2 and the current patient with an upstream deletion.


Assuntos
Proteínas de Homeodomínio/genética , Elementos Reguladores de Transcrição/genética , Deleção de Sequência , Fatores de Transcrição/genética , Animais , Animais Geneticamente Modificados , Segmento Anterior do Olho/anormalidades , Segmento Anterior do Olho/patologia , Anormalidades do Olho/genética , Anormalidades do Olho/patologia , Oftalmopatias Hereditárias , Deleção de Genes , Duplicação Gênica , Expressão Gênica , Humanos , Hibridização In Situ , Lactente , Masculino , Mutação , Plasmídeos , Peixe-Zebra , Proteína Homeobox PITX2
15.
Dev Biol ; 299(1): 63-77, 2006 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-16973147

RESUMO

We report phenotypic and genetic analyses of a recessive, larval lethal zebrafish mutant, bal(a69), characterized by severe eye defects and shortened body axis. The bal(a69) mutation was mapped to chromosome 24 near the laminin alpha 1 (lama1) gene. We analyzed the lama1 gene sequence within bal(a69) embryos and two allelic mutants, bal(arl) and bal(uw1). Missense (bal(a69)), nonsense (bal(arl)), and frameshift (bal(uw1)) alterations in lama1 were found to underlie the phenotypes. Extended analysis of bal(a69) ocular features revealed disrupted lens development with subsequent lens degeneration, focal cornea dysplasia, and hyaloid vasculature defects. Within the neural retina, the ganglion cells showed axonal projection defects and ectopic photoreceptor cells were noted at inner retinal locations. To address whether ocular anomalies were secondary to defects in lens differentiation, bal(a69) mutants were compared to embryos in which the lens vesicle was surgically removed. Our analysis suggests that many of the anterior and posterior ocular defects in bal(a69) are independent of the lens degeneration. Analysis of components of focal adhesion signaling complexes suggests that reduced focal adhesion kinase activation underlies the anterior segment dysgenesis in lama1 mutants. To assess adult ocular phenotypes associated with lama1 mutations, genetic mosaics were generated by transplanting labeled bal cells into ocular-fated regions of wild-type blastulas. Adult chimeric eyes displayed a range of defects including anterior segment dysgenesis and cataracts. Our analysis provides mechanistic insights into the developmental defects and ocular pathogenesis caused by mutations in laminin subunits.


Assuntos
Laminina/deficiência , Laminina/genética , Cristalino/embriologia , Mutação/genética , Peixe-Zebra/embriologia , Sequência de Aminoácidos , Animais , Segmento Anterior do Olho/anormalidades , Segmento Anterior do Olho/citologia , Segmento Anterior do Olho/embriologia , Sequência de Bases , Catarata/patologia , Cromossomos/genética , Clonagem Molecular , Análise Mutacional de DNA , Embrião não Mamífero/citologia , Embrião não Mamífero/embriologia , Adesões Focais , Regulação da Expressão Gênica no Desenvolvimento , Laminina/química , Cristalino/anormalidades , Cristalino/citologia , Cristalino/cirurgia , Dados de Sequência Molecular , Mosaicismo , Fenótipo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Células Ganglionares da Retina/citologia , Vasos Retinianos/anormalidades , Vasos Retinianos/embriologia , Peixe-Zebra/anormalidades
16.
BMC Dev Biol ; 6: 13, 2006 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-16522196

RESUMO

BACKGROUND: Laminins represent major components of basement membranes and play various roles in embryonic and adult tissues. The functional laminin molecule consists of three chains, alpha, beta and gamma, encoded by separate genes. There are twelve different laminin genes identified in mammals to date that are highly homologous in their sequence but different in their tissue distribution. The laminin alpha -1 gene was shown to have the most restricted expression pattern with strong expression in ocular structures, particularly in the developing and mature lens. RESULTS: We identified the zebrafish lama1 gene encoding a 3075-amino acid protein (lama1) that possesses strong identity with the human LAMA1. Zebrafish lama1 transcripts were detected at all stages of embryo development with the highest levels of expression in the developing lens, somites, nervous and urogenital systems. Translation of the lama1 gene was inhibited using two non-overlapping morpholino oligomers that were complementary to sequences surrounding translation initiation. Morphant embryos exhibited an arrest in lens development and abnormalities in the body axis length and curvature. CONCLUSION: These results underline the importance of the laminin alpha 1 for normal ocular development and provide a basis for further analysis of its developmental roles.


Assuntos
Laminina/fisiologia , Cristalino/embriologia , Proteínas de Peixe-Zebra/fisiologia , Peixe-Zebra/embriologia , Sequência de Aminoácidos , Animais , Embrião não Mamífero/metabolismo , Laminina/antagonistas & inibidores , Laminina/genética , Cristalino/metabolismo , Dados de Sequência Molecular , Fenótipo , Filogenia , Alinhamento de Sequência , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/antagonistas & inibidores , Proteínas de Peixe-Zebra/genética
17.
Curr Biol ; 13(17): 1557-63, 2003 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-12956960

RESUMO

Coordination of rhythmic locomotion depends upon a precisely balanced interplay between central and peripheral control mechanisms. Although poorly understood, peripheral proprioceptive mechanosensory input is thought to provide information about body position for moment-to-moment modifications of central mechanisms mediating rhythmic motor output. Pickpocket1 (PPK1) is a Drosophila subunit of the epithelial sodium channel (ENaC) family displaying limited expression in multiple dendritic (md) sensory neurons tiling the larval body wall and a small number of bipolar neurons in the upper brain. ppk1 null mutant larvae had normal external touch sensation and md neuron morphology but displayed striking alterations in crawling behavior. Loss of PPK1 function caused an increase in crawling speed and an unusual straight path with decreased stops and turns relative to wild-type. This enhanced locomotion resulted from sustained peristaltic contraction wave cycling at higher frequency with a significant decrease in pause period between contraction cycles. The mutant phenotype was rescued by a wild-type PPK1 transgene and duplicated by expressing a ppk1RNAi transgene or a dominant-negative PPK1 isoform. These results demonstrate that the PPK1 channel plays an essential role in controlling rhythmic locomotion and provide a powerful genetic model system for further analysis of central and peripheral control mechanisms and their role in movement disorders.


Assuntos
Proteínas de Drosophila/genética , Drosophila/genética , Drosophila/fisiologia , Locomoção/fisiologia , Neurônios Aferentes/fisiologia , Canais de Sódio/genética , Animais , Southern Blotting , Mapeamento Cromossômico , Canais Epiteliais de Sódio , Fluorescência , Perfilação da Expressão Gênica , Imuno-Histoquímica , Larva/fisiologia , Modelos Neurológicos , Contração Muscular/fisiologia , Transgenes/genética , Transgenes/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...